THE DISTRIBUTION OF ZEROS OF EPSTEIN ZETA FUNCTIONS OVER GLn

نویسنده

  • RIAD MASRI
چکیده

We study the distribution of the nontrivial zeros of ideal class zeta functions associated to elements in the symmetric space of GLn over a number field. We establish asymptotics for the number of nontrivial zeros up to height T , and asymptotics for the distribution of the nontrivial zeros with respect to the critical line. We combine these results to study the mean value of the real parts of the nontrivial zeros.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New analytic algorithms in number theory

1. In t roduc t ion . Several recently invented number-theoretic algorithms are sketched below. They all have the common feature that they rely on bounded precision computations of analytic functions. The main one of these algorithms is a new method of calculating values of the Riemann zeta function at multiple points. This method enables one to verify the truth of the Riemann Hypothesis (RH) f...

متن کامل

The Spacing Distributions between Zeros of Zeta Functions

0. Introduction In a remarkable numerical experiment, Odlyzko Od] has found that the local spacing distribution between the zeros of the Riemann Zeta function is modelled by the eigen-value distributions coming from random matrix theory. In particular by the \GUE" (Gaussian Unitary Ensemble) model Gau]. His experiment was inspired by the paper of Montgomery Mon] who determined the pair correlat...

متن کامل

On the Location of the Zero-free Half-plane of a Random Epstein Zeta Function

In this note we study, for a random lattice L of large dimension n, the supremum of the real parts of the zeros of the Epstein zeta function En(L, s) and prove that this random variable has a limit distribution, which we give explicitly. This limit distribution is studied in some detail; in particular we give an explicit formula for its distribution function.

متن کامل

On the Distribution of Imaginary Parts of Zeros of the Riemann Zeta Function

There is an intimate connection between the distribution of the nontrivial zeros of the Riemann zeta function ζ(s) and the distribution of prime numbers. Critical to many prime number problems is the horizontal distribution of zeros; here the Riemann Hypothesis (RH) asserts that the zeros all have real part 1 2 . There is also much interest in studying the distribution of the imaginary parts of...

متن کامل

Zeros of Lattice Sums Zeros of Epstein Zeta Functions off the Critical Line

We consider zeros of two-dimensional sums over rectangular lattices, and in particular a sum first studied by Potter and Titchmarsh in 1935. They proved several properties of the zeros of sums over the rectangular lattice, and commented on the fact that a particular sum had zeros off the critical line. We investigate the behaviour of one such zero as a function of the ratio of the periods of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008